1//////////////////////////////////////////////////////////////////////
2// LibFile: partitions.scad
3// Cut objects with a plane, or partition them into interlocking pieces for easy printing of large objects.
4// Includes:
5// include <BOSL2/std.scad>
6// FileGroup: Basic Modeling
7// FileSummary: Cut objects with a plane or partition them into interlocking pieces.
8// FileFootnotes: STD=Included in std.scad
9//////////////////////////////////////////////////////////////////////
10
11
12// Section: Planar Cutting
13
14// Function&Module: half_of()
15// Synopsis: Masks half of an object at a cut plane.
16// SynTags: Geom, VNF, Path, Region
17// Topics: Partitions, Masking
18// See Also: back_half(), front_half(), left_half(), right_half(), top_half(), bottom_half(), intersection()
19//
20// Usage: as module
21// half_of(v, [cp], [s], [planar]) CHILDREN;
22// Usage: as function
23// result = half_of(p,v,[cp]);
24//
25// Description:
26// Slices an object at a cut plane, and masks away everything that is on one side. The v parameter
27// is either a plane specification or a normal vector. The `s` parameter is needed for the module
28// version to control the size of the masking cube. If `s` is too large then the preview display
29// will flip around and display the wrong half, but if it is too small it won't fully mask your
30// model. When called as a function, you must supply a vnf, path or region in p. If planar is set
31// to true for the module version the operation is performed in 2D and UP and DOWN are treated as
32// equivalent to BACK and FWD respectively.
33//
34// Arguments:
35// p = path, region or VNF to slice. (Function version)
36// v = Normal of plane to slice at. Keeps everything on the side the normal points to. Default: [0,0,1] (UP)
37// cp = If given as a scalar, moves the cut plane along the normal by the given amount. If given as a point, specifies a point on the cut plane. Default: [0,0,0]
38// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
39// planar = If true, perform a 2D operation. When planar, a `v` of `UP` or `DOWN` becomes equivalent of `BACK` and `FWD` respectively. (Module version). Default: false.
40//
41// Examples:
42// half_of(DOWN+BACK, cp=[0,-10,0]) cylinder(h=40, r1=10, r2=0, center=false);
43// half_of(DOWN+LEFT, s=200) sphere(d=150);
44// Example(2D):
45// half_of([1,1], planar=true) circle(d=50);
46module half_of(v=UP, cp, s=100, planar=false)
47{
48 req_children($children);
49 cp = is_vector(v,4)? assert(cp==undef, "Don't use cp with plane definition.") plane_normal(v) * v[3] :
50 is_vector(cp)? cp :
51 is_num(cp)? cp*unit(v) :
52 [0,0,0];
53 v = is_vector(v,4)? plane_normal(v) : v;
54 if (cp != [0,0,0]) {
55 translate(cp) half_of(v=v, s=s, planar=planar) translate(-cp) children();
56 } else if (planar) {
57 v = (v==UP)? BACK : (v==DOWN)? FWD : v;
58 ang = atan2(v.y, v.x);
59 difference() {
60 children();
61 rotate(ang+90) {
62 back(s/2) square(s, center=true);
63 }
64 }
65 } else {
66 difference() {
67 children();
68 rot(from=UP, to=-v) {
69 up(s/2) cube(s, center=true);
70 }
71 }
72 }
73}
74
75function half_of(p, v=UP, cp) =
76 is_vnf(p) ?
77 assert(is_vector(v) && (len(v)==3 || len(v)==4),str("Must give 3-vector or plane specification",v))
78 assert(select(v,0,2)!=[0,0,0], "vector v must be nonzero")
79 let(
80 plane = is_vector(v,4) ? assert(cp==undef, "Don't use cp with plane definition.") v
81 : is_undef(cp) ? [each v, 0]
82 : is_num(cp) ? [each v, cp*(v*v)/norm(v)]
83 : assert(is_vector(cp,3),"Centerpoint must be a 3-vector")
84 [each v, cp*v]
85 )
86 vnf_halfspace(plane, p)
87 : is_path(p) || is_region(p) ?
88 let(
89 v = (v==UP)? BACK : (v==DOWN)? FWD : v,
90 cp = is_undef(cp) ? [0,0]
91 : is_num(cp) ? v*cp
92 : assert(is_vector(cp,2) || (is_vector(cp,3) && cp.z==0),"Centerpoint must be 2-vector")
93 cp
94 )
95 assert(is_vector(v,2) || (is_vector(v,3) && v.z==0),"Must give 2-vector")
96 assert(!all_zero(v), "Vector v must be nonzero")
97 let(
98 v=unit(v),
99 bounds = pointlist_bounds(is_region(p)?flatten(p):p),
100 L = 2*max(norm(bounds[0]-cp), norm(bounds[1]-cp)),
101 u = [-v.y,v.x],
102 box = [cp+u*L, cp+(v+u)*L, cp+(v-u)*L, cp-u*L]
103 )
104 intersection(box,p)
105 : assert(false, "Input must be a region, path or VNF");
106
107
108
109/* This code cut 3d paths but leaves behind connecting line segments
110 is_path(p) ?
111 //assert(len(p[0]) == d, str("path must have dimension ", d))
112 let(z = [for(x=p) (x-cp)*v])
113 [ for(i=[0:len(p)-1]) each concat(z[i] >= 0 ? [p[i]] : [],
114 // we assume a closed path here;
115 // to make this correct for an open path,
116 // just replace this by [] when i==len(p)-1:
117 let(j=(i+1)%len(p))
118 // the remaining path may have flattened sections, but this cannot
119 // create self-intersection or whiskers:
120 z[i]*z[j] >= 0 ? [] : [(z[j]*p[i]-z[i]*p[j])/(z[j]-z[i])]) ]
121 :
122*/
123
124
125// Function&Module: left_half()
126// Synopsis: Masks the right half of an object along the Y-Z plane, leaving the left half.
127// SynTags: Geom, VNF, Path, Region
128// Topics: Partitions, Masking
129// See Also: back_half(), front_half(), right_half(), top_half(), bottom_half(), half_of(), intersection()
130//
131// Usage: as module
132// left_half([s], [x]) CHILDREN;
133// left_half(planar=true, [s], [x]) CHILDREN;
134// Usage: as function
135// result = left_half(p, [x]);
136//
137// Description:
138// Slices an object at a vertical Y-Z cut plane, and masks away everything that is right of it.
139// The `s` parameter is needed for the module version to control the size of the masking cube.
140// If `s` is too large then the preview display will flip around and display the wrong half,
141// but if it is too small it won't fully mask your model.
142//
143// Arguments:
144// p = VNF, region or path to slice (function version)
145// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
146// x = The X coordinate of the cut-plane. Default: 0
147// planar = If true, perform a 2D operation. (Module version) Default: false.
148// Examples:
149// left_half() sphere(r=20);
150// left_half(x=-8) sphere(r=20);
151// Example(2D):
152// left_half(planar=true) circle(r=20);
153module left_half(s=100, x=0, planar=false)
154{
155 req_children($children);
156 dir = LEFT;
157 difference() {
158 children();
159 translate([x,0,0]-dir*s/2) {
160 if (planar) {
161 square(s, center=true);
162 } else {
163 cube(s, center=true);
164 }
165 }
166 }
167}
168function left_half(p,x=0) = half_of(p, LEFT, [x,0,0]);
169
170
171
172// Function&Module: right_half()
173// SynTags: Geom, VNF, Path, Region
174// Synopsis: Masks the left half of an object along the Y-Z plane, leaving the right half.
175// Topics: Partitions, Masking
176// See Also: back_half(), front_half(), left_half(), top_half(), bottom_half(), half_of(), intersection()
177//
178// Usage: as module
179// right_half([s=], [x=]) CHILDREN;
180// right_half(planar=true, [s=], [x=]) CHILDREN;
181// Usage: as function
182// result = right_half(p, [x=]);
183//
184// Description:
185// Slices an object at a vertical Y-Z cut plane, and masks away everything that is left of it.
186// The `s` parameter is needed for the module version to control the size of the masking cube.
187// If `s` is too large then the preview display will flip around and display the wrong half,
188// but if it is too small it won't fully mask your model.
189// Arguments:
190// p = VNF, region or path to slice (function version)
191// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
192// x = The X coordinate of the cut-plane. Default: 0
193// planar = If true, perform a 2D operation. (Module version) Default: false.
194// Examples(FlatSpin,VPD=175):
195// right_half() sphere(r=20);
196// right_half(x=-5) sphere(r=20);
197// Example(2D):
198// right_half(planar=true) circle(r=20);
199module right_half(s=100, x=0, planar=false)
200{
201 dir = RIGHT;
202 difference() {
203 children();
204 translate([x,0,0]-dir*s/2) {
205 if (planar) {
206 square(s, center=true);
207 } else {
208 cube(s, center=true);
209 }
210 }
211 }
212}
213function right_half(p,x=0) = half_of(p, RIGHT, [x,0,0]);
214
215
216
217// Function&Module: front_half()
218// Synopsis: Masks the back half of an object along the X-Z plane, leaving the front half.
219// SynTags: Geom, VNF, Path, Region
220// Topics: Partitions, Masking
221// See Also: back_half(), left_half(), right_half(), top_half(), bottom_half(), half_of(), intersection()
222//
223// Usage:
224// front_half([s], [y]) CHILDREN;
225// front_half(planar=true, [s], [y]) CHILDREN;
226// Usage: as function
227// result = front_half(p, [y]);
228//
229// Description:
230// Slices an object at a vertical X-Z cut plane, and masks away everything that is behind it.
231// The `s` parameter is needed for the module version to control the size of the masking cube.
232// If `s` is too large then the preview display will flip around and display the wrong half,
233// but if it is too small it won't fully mask your model.
234// Arguments:
235// p = VNF, region or path to slice (function version)
236// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
237// y = The Y coordinate of the cut-plane. Default: 0
238// planar = If true, perform a 2D operation. (Module version) Default: false.
239// Examples(FlatSpin,VPD=175):
240// front_half() sphere(r=20);
241// front_half(y=5) sphere(r=20);
242// Example(2D):
243// front_half(planar=true) circle(r=20);
244module front_half(s=100, y=0, planar=false)
245{
246 req_children($children);
247 dir = FWD;
248 difference() {
249 children();
250 translate([0,y,0]-dir*s/2) {
251 if (planar) {
252 square(s, center=true);
253 } else {
254 cube(s, center=true);
255 }
256 }
257 }
258}
259function front_half(p,y=0) = half_of(p, FRONT, [0,y,0]);
260
261
262
263// Function&Module: back_half()
264// Synopsis: Masks the front half of an object along the X-Z plane, leaving the back half.
265// SynTags: Geom, VNF, Path, Region
266// Topics: Partitions, Masking
267// See Also: front_half(), left_half(), right_half(), top_half(), bottom_half(), half_of(), intersection()
268//
269// Usage:
270// back_half([s], [y]) CHILDREN;
271// back_half(planar=true, [s], [y]) CHILDREN;
272// Usage: as function
273// result = back_half(p, [y]);
274//
275// Description:
276// Slices an object at a vertical X-Z cut plane, and masks away everything that is in front of it.
277// The `s` parameter is needed for the module version to control the size of the masking cube.
278// If `s` is too large then the preview display will flip around and display the wrong half,
279// but if it is too small it won't fully mask your model.
280// Arguments:
281// p = VNF, region or path to slice (function version)
282// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
283// y = The Y coordinate of the cut-plane. Default: 0
284// planar = If true, perform a 2D operation. (Module version) Default: false.
285// Examples:
286// back_half() sphere(r=20);
287// back_half(y=8) sphere(r=20);
288// Example(2D):
289// back_half(planar=true) circle(r=20);
290module back_half(s=100, y=0, planar=false)
291{
292 req_children($children);
293 dir = BACK;
294 difference() {
295 children();
296 translate([0,y,0]-dir*s/2) {
297 if (planar) {
298 square(s, center=true);
299 } else {
300 cube(s, center=true);
301 }
302 }
303 }
304}
305function back_half(p,y=0) = half_of(p, BACK, [0,y,0]);
306
307
308
309// Function&Module: bottom_half()
310// Synopsis: Masks the top half of an object along the X-Y plane, leaving the bottom half.
311// SynTags: Geom, VNF, Path, Region
312// Topics: Partitions, Masking
313// See Also: back_half(), front_half(), left_half(), right_half(), top_half(), half_of(), intersection()
314//
315// Usage:
316// bottom_half([s], [z]) CHILDREN;
317// Usage: as function
318// result = bottom_half(p, [z]);
319//
320// Description:
321// Slices an object at a horizontal X-Y cut plane, and masks away everything that is above it.
322// The `s` parameter is needed for the module version to control the size of the masking cube.
323// If `s` is too large then the preview display will flip around and display the wrong half,
324// but if it is too small it won't fully mask your model.
325// Arguments:
326// p = VNF, region or path to slice (function version)
327// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
328// z = The Z coordinate of the cut-plane. Default: 0
329// Examples:
330// bottom_half() sphere(r=20);
331// bottom_half(z=-10) sphere(r=20);
332module bottom_half(s=100, z=0)
333{
334 req_children($children);
335 dir = DOWN;
336 difference() {
337 children();
338 translate([0,0,z]-dir*s/2) {
339 cube(s, center=true);
340 }
341 }
342}
343function bottom_half(p,z=0) = half_of(p,BOTTOM,[0,0,z]);
344
345
346
347// Function&Module: top_half()
348// Synopsis: Masks the bottom half of an object along the X-Y plane, leaving the top half.
349// SynTags: Geom, VNF, Path, Region
350// Topics: Partitions, Masking
351// See Also: back_half(), front_half(), left_half(), right_half(), bottom_half(), half_of(), intersection()
352//
353// Usage: as module
354// top_half([s], [z]) CHILDREN;
355// Usage: as function
356// result = top_half(p, [z]);
357//
358// Description:
359// Slices an object at a horizontal X-Y cut plane, and masks away everything that is below it.
360// The `s` parameter is needed for the module version to control the size of the masking cube.
361// If `s` is too large then the preview display will flip around and display the wrong half,
362// but if it is too small it won't fully mask your model.
363// Arguments:
364// p = VNF, region or path to slice (function version)
365// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, OpenSCAD's preview rendering may display the wrong half. (Module version) Default: 100
366// z = The Z coordinate of the cut-plane. Default: 0
367// Examples(Spin,VPD=175):
368// top_half() sphere(r=20);
369// top_half(z=5) sphere(r=20);
370module top_half(s=100, z=0)
371{
372 req_children($children);
373 dir = UP;
374 difference() {
375 children();
376 translate([0,0,z]-dir*s/2) {
377 cube(s, center=true);
378 }
379 }
380}
381function top_half(p,z=0) = half_of(p,UP,[0,0,z]);
382
383
384
385// Section: Partioning into Interlocking Pieces
386
387
388function _partition_subpath(type) =
389 type=="flat"? [[0,0],[1,0]] :
390 type=="sawtooth"? [[0,-0.5], [0.5,0.5], [1,-0.5]] :
391 type=="sinewave"? [for (a=[0:5:360]) [a/360,sin(a)/2]] :
392 type=="comb"? let(dx=0.5*sin(2)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
393 type=="finger"? let(dx=0.5*sin(20)) [[0,0],[0+dx,0.5],[0.5-dx,0.5],[0.5+dx,-0.5],[1-dx,-0.5],[1,0]] :
394 type=="dovetail"? [[0,-0.5], [0.3,-0.5], [0.2,0.5], [0.8,0.5], [0.7,-0.5], [1,-0.5]] :
395 type=="hammerhead"? [[0,-0.5], [0.35,-0.5], [0.35,0], [0.15,0], [0.15,0.5], [0.85,0.5], [0.85,0], [0.65,0], [0.65,-0.5],[1,-0.5]] :
396 type=="jigsaw"? concat(
397 arc(r=5/16, cp=[0,-3/16], start=270, angle=125),
398 arc(r=5/16, cp=[1/2,3/16], start=215, angle=-250),
399 arc(r=5/16, cp=[1,-3/16], start=145, angle=125)
400 ) :
401 assert(false, str("Unsupported cutpath type: ", type));
402
403
404function _partition_cutpath(l, h, cutsize, cutpath, gap) =
405 let(
406 check = assert(is_finite(l))
407 assert(is_finite(h))
408 assert(is_finite(gap))
409 assert(is_finite(cutsize) || is_vector(cutsize,2))
410 assert(is_string(cutpath) || is_path(cutpath,2)),
411 cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize],
412 cutpath = is_path(cutpath)? cutpath :
413 _partition_subpath(cutpath),
414 reps = ceil(l/(cutsize.x+gap)),
415 cplen = (cutsize.x+gap) * reps,
416 path = deduplicate(concat(
417 [[-l/2, cutpath[0].y*cutsize.y]],
418 [for (i=[0:1:reps-1], pt=cutpath) v_mul(pt,cutsize)+[i*(cutsize.x+gap)+gap/2-cplen/2,0]],
419 [[ l/2, cutpath[len(cutpath)-1].y*cutsize.y]]
420 )),
421 stidxs = [for (i = idx(path)) if (path[i].x < -l/2) i],
422 enidxs = [for (i = idx(path)) if (path[i].x > +l/2) i],
423 stidx = stidxs? last(stidxs) : 0,
424 enidx = enidxs? enidxs[0] : -1,
425 trunc = select(path, stidx, enidx)
426 ) trunc;
427
428
429// Module: partition_mask()
430// Synopsis: Creates a mask to remove half an object with the remaining half suitable for reassembly.
431// SynTags: Geom
432// Topics: Partitions, Masking, Paths
433// See Also: partition_cut_mask(), partition()
434// Usage:
435// partition_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
436// Description:
437// Creates a mask that you can use to difference or intersect with an object to remove half of it,
438// leaving behind a side designed to allow assembly of the sub-parts.
439// Arguments:
440// l = The length of the cut axis.
441// w = The width of the part to be masked, back from the cut plane.
442// h = The height of the part to be masked.
443// cutsize = The width of the cut pattern to be used.
444// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
445// gap = Empty gaps between cutpath iterations. Default: 0
446// inverse = If true, create a cutpath that is meant to mate to a non-inverted cutpath.
447// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
448// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
449// $slop = The amount to shrink the mask by, to correct for printer-specific fitting.
450// Examples:
451// partition_mask(w=50, gap=0, cutpath="jigsaw");
452// partition_mask(w=50, gap=30, cutpath="jigsaw");
453// partition_mask(w=50, gap=30, cutpath="jigsaw", inverse=true);
454// partition_mask(w=50, gap=30, cutsize=15, cutpath="jigsaw");
455// partition_mask(w=50, cutsize=[20,20], gap=30, cutpath="jigsaw");
456// Examples(2D):
457// partition_mask(w=20, cutpath="sawtooth");
458// partition_mask(w=20, cutpath="sinewave");
459// partition_mask(w=20, cutpath="comb");
460// partition_mask(w=20, cutpath="finger");
461// partition_mask(w=20, cutpath="dovetail");
462// partition_mask(w=20, cutpath="hammerhead");
463// partition_mask(w=20, cutpath="jigsaw");
464module partition_mask(l=100, w=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, inverse=false, anchor=CENTER, spin=0, orient=UP)
465{
466 cutsize = is_vector(cutsize)? point2d(cutsize) : [cutsize*2, cutsize];
467 path = _partition_cutpath(l, h, cutsize, cutpath, gap);
468 midpath = select(path,1,-2);
469 sizepath = concat([path[0]+[-get_slop(),0]], midpath, [last(path)+[get_slop(),0]], [[+(l/2+get_slop()), (w+get_slop())*(inverse?-1:1)], [-(l/2+get_slop()), (w+get_slop())*(inverse?-1:1)]]);
470 bnds = pointlist_bounds(sizepath);
471 fullpath = concat(path, [[last(path).x, w*(inverse?-1:1)], [path[0].x, w*(inverse?-1:1)]]);
472 attachable(anchor,spin,orient, size=point3d(bnds[1]-bnds[0],h)) {
473 linear_extrude(height=h, center=true, convexity=10) {
474 intersection() {
475 offset(delta=-get_slop()) polygon(fullpath);
476 square([l, w*2], center=true);
477 }
478 }
479 children();
480 }
481}
482
483
484// Module: partition_cut_mask()
485// Synopsis: Creates a mask to cut an object into two subparts that can be reassembled.
486// SynTags: Geom
487// Topics: Partitions, Masking, Paths
488// See Also: partition_mask(), partition()
489// Usage:
490// partition_cut_mask(l, w, h, [cutsize], [cutpath], [gap], [inverse], [$slop=], [anchor=], [spin=], [orient=]) [ATTACHMENTS];
491// Description:
492// Creates a mask that you can use to difference with an object to cut it into two sub-parts that can be assembled.
493// The `$slop` value is important to get the proper fit and should probably be smaller than 0.2. The examples below
494// use larger values to make the mask easier to see.
495// Arguments:
496// l = The length of the cut axis.
497// w = The width of the part to be masked, back from the cut plane.
498// h = The height of the part to be masked.
499// cutsize = The width of the cut pattern to be used.
500// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5. Default: "jigsaw"
501// gap = Empty gaps between cutpath iterations. Default: 0
502// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
503// orient = Vector to rotate top towards. See [orient](attachments.scad#subsection-orient). Default: `UP`
504// $slop = The width of the cut mask, to correct for printer-specific fitting.
505// Examples:
506// partition_cut_mask(gap=0, cutpath="dovetail");
507// partition_cut_mask(gap=30, cutpath="dovetail");
508// partition_cut_mask(gap=30, cutsize=15, cutpath="dovetail");
509// partition_cut_mask(gap=30, cutsize=[20,20], cutpath="dovetail");
510// Examples(2DMed):
511// partition_cut_mask(cutpath="sawtooth",$slop=0.5);
512// partition_cut_mask(cutpath="sinewave",$slop=0.5);
513// partition_cut_mask(cutpath="comb",$slop=0.5);
514// partition_cut_mask(cutpath="finger",$slop=0.5);
515// partition_cut_mask(cutpath="dovetail",$slop=1);
516// partition_cut_mask(cutpath="hammerhead",$slop=1);
517// partition_cut_mask(cutpath="jigsaw",$slop=0.5);
518module partition_cut_mask(l=100, h=100, cutsize=10, cutpath="jigsaw", gap=0, anchor=CENTER, spin=0, orient=UP)
519{
520 cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
521 path = _partition_cutpath(l, h, cutsize, cutpath, gap);
522 attachable(anchor,spin,orient, size=[l,cutsize.y,h]) {
523 linear_extrude(height=h, center=true, convexity=10) {
524 stroke(path, width=max(0.1, get_slop()*2));
525 }
526 children();
527 }
528}
529
530
531// Module: partition()
532// Synopsis: Cuts an object in two with matched joining edges, then separates the parts.
533// SynTags: Geom, VNF, Path, Region
534// Topics: Partitions, Masking, Paths
535// See Also: partition_cut_mask(), partition_mask()
536// Usage:
537// partition(size, [spread], [cutsize], [cutpath], [gap], [spin], [$slop=]) CHILDREN;
538// Description:
539// Partitions an object into two parts, spread apart a small distance, with matched joining edges.
540// Arguments:
541// size = The [X,Y,Z] size of the object to partition.
542// spread = The distance to spread the two parts by.
543// cutsize = The width of the cut pattern to be used.
544// cutpath = The cutpath to use. Standard named paths are "flat", "sawtooth", "sinewave", "comb", "finger", "dovetail", "hammerhead", and "jigsaw". Alternatively, you can give a cutpath as a 2D path, where X is between 0 and 1, and Y is between -0.5 and 0.5.
545// gap = Empty gaps between cutpath iterations. Default: 0
546// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#subsection-spin). Default: `0`
547// ---
548// $slop = Extra gap to leave to correct for printer-specific fitting.
549// Examples(Med):
550// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
551// partition(spread=12, gap=30, cutpath="dovetail") cylinder(h=50, d=80, center=false);
552// partition(spread=20, gap=20, cutsize=15, cutpath="dovetail") cylinder(h=50, d=80, center=false);
553// partition(spread=25, gap=15, cutsize=[20,20], cutpath="dovetail") cylinder(h=50, d=80, center=false);
554// Examples(2DMed):
555// partition(cutpath="sawtooth") cylinder(h=50, d=80, center=false);
556// partition(cutpath="sinewave") cylinder(h=50, d=80, center=false);
557// partition(cutpath="comb") cylinder(h=50, d=80, center=false);
558// partition(cutpath="finger") cylinder(h=50, d=80, center=false);
559// partition(spread=12, cutpath="dovetail") cylinder(h=50, d=80, center=false);
560// partition(spread=12, cutpath="hammerhead") cylinder(h=50, d=80, center=false);
561// partition(cutpath="jigsaw") cylinder(h=50, d=80, center=false);
562module partition(size=100, spread=10, cutsize=10, cutpath="jigsaw", gap=0, spin=0)
563{
564 req_children($children);
565 size = is_vector(size)? size : [size,size,size];
566 cutsize = is_vector(cutsize)? cutsize : [cutsize*2, cutsize];
567 rsize = v_abs(rot(spin,p=size));
568 vec = rot(spin,p=BACK)*spread/2;
569 move(vec) {
570 intersection() {
571 children();
572 partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, spin=spin);
573 }
574 }
575 move(-vec) {
576 intersection() {
577 children();
578 partition_mask(l=rsize.x, w=rsize.y, h=rsize.z, cutsize=cutsize, cutpath=cutpath, gap=gap, inverse=true, spin=spin);
579 }
580 }
581}
582
583
584
585// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap